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Motions in a Bose condensate: V. Stability of solitary wave 
solutions of non-linear Schrodinger equations in two and three 
dimensions 

C A Jones, S J Puttermant and P H Roberts$ 
School of Mathematics, University of Newcastle upon Tyne, Newcastle upon Tyne 
NE1 7RU, UK 

Received 3 December 1985 

Abstract. The non-linear Schrodinger equation has previously been solved in two 
dimensions ( 2 ~ )  and three dimensions (3D) to give sequences of solitary waves, i.e. finite 
amplitude disturbances that propagate without change of form. The 3D dispersion relation- 
ship (the plot of energy, %, against quasimomentum, p )  has two branches for p > pmln and 
none for p < pmln. The lower energy branch consists largely of disturbances possessing 
circulation and resembling large vortex rings in the limit p + CO. The upper energy branch 
consists of rarefaction pulses that are governed as p + a by the Kadomtsev-Petviashvili 
(KP) equation. The 2D dispersion relationship (where % and p refer to unit length) is a 
single branch of solitary waves extending from p = 0 to p = s, the latter resembling vortex 
pairs and the former being rarefaction pulses governed by the K P  equation. 

In this paper new integral properties of the solitary waves are derived, and are tested 
against previous numerical work. Their forms in the K P  limit are compared with the results 
of Iordanskii and Smirnov. 

The stability of solitary waves is examined both analytically and numerically. The 
analysis compares % for a solitary wave with % for a neighbouring state of the same p ,  
obtained from a solitary wave by coordinate stretching. On this basis it is suggested that 
the lower branch of the 3D waves and the entire ZD sequence is stable to these disturbances, 
whereas the upper branch 3D solutions appear to be unstable. The implied creation of 
circulation if an upper branch solution descends in energy to a lower branch wave is 
examined, and is shown not to violate Kelvin’s theorem. The tensor vinal theorem is 
derived. Numerical work is presented that supports the analytical arguments. 

1. Introduction 

This paper is the fifth in a series of studies on the properties of the imperfect Bose 
condensate: see Roberts and Grant (1971, I) ,  Grant (1971, II) ,  Grant and Roberts 
(1974, 111) and Jones and Roberts (1982, IV). In particular, it is a sequel to paper IV 
in which axisymmetric solitary waves were studied numerically. Such a wave is defined 
as a disturbance that moves through the fluid with speed U (say) preserving its form 
as it does so. The simplest example of such a disturbance was obtained for U --* 0 and 
closely resembles a classical vortex ring of circulation K = h / m ,  where h is Planck’s 
constant and m is the atomic mass. 

t Permanent address: Physics Department, University of California, Los Angeles, CA 90024, USA. 
$ Now at: Mathematics Department, University of California, Los Angeles, CA 90024, USA. 
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As U was increased, some unexpected and remarkable results emerged. The energy, 
$, and (quasi-) momentum, p ,  of the wave at first diminished, as did the spatial scale 
of the disturbance, the cores at opposite sides of a diameter of the vortex tending to 
merge, so creating a region of depleted density throughout and around the entire 
vortex ring. Further increase of U led to loss of vorticity, at p =pv (say), but not to 
a loss of the solution. At first p and 8 continued to decrease, but then a cusp was 
reached in the p 8  plane at which p and 8 attained simultaneous minima, pmin and 
%‘min. Thereafter p and 8 increased (as did the spatial scale of the disturbance, which 
now formed a rarefaction pulse) until, as U approached the speed of sound, c, they 
became infinite. Thus for all p > pmin, the dispersion relationship for the solitary wave 
has two branches: a lower energy ‘vortex’ branch and a higher energy ‘rarefaction’ 
branch (see figure l (a)) .  

On both upper and lower branches, solutions can be obtained in the limit p + w  
by asymptotic methods. This was done in paper I for the vortex branch and in the 
appendix to paper IV for the rarefaction branch. It was found that as U +  c, the 
rarefaction pulse was governed by a three-dimensional Kadomtsev-Petviashvili (1970) 
equation, and that it extended over distances of order a / &  along the symmetry axis 
(its direction of motion) and over distances of order a /& ’  in the transverse directions. 
Here a is the healing length and e’ = 1 - U / c .  The fluid velocity associated with the 
pulse is of order E’C, and the deviation in the density from its undisturbed value, p o ,  
is of order e 2 p 0 .  We have since learned that essentially the same asymptotic theory 
for the rarefaction pulse had earlier been given by Iordanskii and Smirnov (1978). 
They, however, did not suggest that the upper rarefaction branch was in any way 
related to the lower vortex branch. Whether the branches would remain connected if 
a more realistic model of helium 11 were adopted is a completely open question. There 
is, however, no doubt whatsoever that the Ginzberg-Pitaevskii equations (on which 
this series of papers rests) does link them together, and that this fact is of interest to 
those seeking to elucidate the properties of the non-linear Schrodinger equation (the 
‘NLS equation’ as we shall term it). 

The present paper was motivated by a number of questions left unanswered by 
paper IV, and by the need to relate our work more closely to that of Iordanskii and 
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Figure 1. ( a )  The momentum, p ,  and energy Ss of the sequence of axisymmetric solitary 
wave solutions of the non-linear Schrodinger equation. The lower energy solutions possess 
vorticity for p > pv, where U = 0.62. The remainder of that branch and the entire upper 
branch consists of rarefaction waves. The branches meet at the cusp (pmi,,, gmim) at which 
U =0.657. ( b )  The momentum per unit length, p ,  and the energy per unit length, 8, of 
the sequence of two-dimensional solitary wave solutions of the non-linear Schrodinger 
equation. For p > pv ,  where U 0.43, the solutions possess vorticity. 
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Smirnov (1978). It was, for instance, not immediately apparent that their result for 
the speed of the solitary wave was equivalent to ours. The new integrals needed to 
establish this are derived in P 2. 

These new integrals were discovered while we were considering the relationship of 
our work to a theorem due to Derrick (1964; see also Lee 1981) on the non-existence 
of stable solitary waves in more than one spatial dimension. Later we discovered a 
way of deriving the new integrals directly. The way in which they bring our work into 
agreement with Iordanskii and Smimov (1978) is discussed in P 3.  

The NLS equation which results from the Bose condensate model can be written 
in scaled units as 

and must be solved subject to the boundary condition 

q+1 1x1 +a 
this applying for all directions of x. Note that in many applications a slightly different 
NLS equation is considered in which the 1-IYJ2 term in ( 1 . 1 )  is replaced by -I*/*, 
and in which condition (1.2) is correspondingly replaced by 9 + 0, 1x1 + 00 (see e.g. 
Ablowitz and Segur 1979). This 'zero boundary condition' problem gives rise to a 
rather different range of phenomena (e.g. see Christiansen and Lomdahl 1981). 

By 'three-dimensional solitary waves' we will mean axisymmetric form-preserving 
solutions of ( 1 . 1 )  and (1.2), i.e. 

(1.3) 

where (s, 4, z) are cylindrical coordinates. These evidently travel with velocity U in 
the z direction. Substituting (1 .3)  into (1 .1)  we have 

9 = 9 ( s ,  z - Ut)  

2i u a q / a z  = V 2 q  + v'( 1 - [ * I 2 )  (1.4) 

which we will solve for t = 0. In addition to the three-dimensional ( 3 ~ )  solitary waves 
(1.3), we will also seek two-dimensional ( 2 ~ )  solutions of ( l . l ) ,  i.e. solutions that are 
independent of one Cartesian coordinate ( y )  and are also form-preserving: 

q = V ( x ,  2 - Ut) .  (1 .5)  

In the limit U+O solutions (1 .3)  resemble classical vortex rings of circulation 2 ~ ,  
while solutions (1 .5)  become a pair of oppositely directed vortices of circulation 2 ~ .  
The sequence of 2~ solitary waves is shown in figure l(b).  

As mentioned above, an interesting feature of these sequences of solutions dis- 
covered in paper IV was the disappearance, as U was increased, of the zero of 9, 
which corresponds to the vortex core. This raises the question of whether it is possible 
for circulation to be created and destroyed during the time evolution of a solution of 
( l . l ) ,  or whether the Kelvin circulation theorem will prevent this from happening. 
This question is of some importance in the study of helium II  and particularly in the 
study of superfluid turbulence (Barenghi et a1 1983). It is discussed in § 4. 

The last question we address is that of the stability of the solitary waves (1.3) and 
(1.5) shown in figure 1. This is a difficult problem and we have been unable to reach 
definite conclusions. On the basis of a number of arguments (§ 4), we conjecture that 
the 2~ sequence of solitary waves found in paper IV is stable, as is the lower branch 
of the 3~ solitary waves; the same arguments suggest that the upper branch of the 
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3~ sequence is unstable. We also present results of some numerical computations of 
the time evolution of a finite difference scheme representing ( l . l ) ,  and which are 
consistent with those conclusions. 

We conclude this introduction by summarising some of the findings of paper IV 
that are relevant to this paper. It is well known that the flow at large distances from 
a classical vortex ring is dipolar. Analogously here, the solutions (1.3) to (1.4) have 
the form 

i mz 
[ zz+ (1 - 2 U2)?]3/2+ * . ’ V - l -  

Because of the factor 1 -2U2, we term m ‘the stretched dipole moment’ of the wave. 
Similarly for solutions (1.5) 

i mz 
V - l -  +. . . 1x1 +a. 

[z2+(l-2U2)x2]  (1.7) 

Because U < I / d  (the low frequency speed of sound), these forms do not give rise 
to unbounded Y. It was one of the objectives of paper IV to evaluate m for both 3~ 
and 2~ cases. The new integral relationships reported in 0 2 provide new methods of 
evaluating m, and therefore of now subjecting the resu1t.s to paper IV to a posteriori 
tests. These relationships also involve the momentum p and energy 8 of the waves: 

p =-. [(V*- 1)VV-(V-  l)VV*] d V  
21 ‘ I  

(VV\IrJ2dV+- (1- /VI2)*dV 
4 ‘ 5  

where d V =  s ds  d 4  dz in the 3~ case. In the ZD case, p and 8 are the momentum 
energy per unit y length and d V = dx dz. In both cases the integrals are taken over 
all space. It was shown in paper IV that, differentiating along the solitary wave 
sequences, 

U = a s l a p .  (1.10) 

2. New integral properties 

2.1. Three-dimensional solutions 

Two integral properties were established in paper IV: 

%‘=Up+$ ( l - ~ V ~ 2 ) ~ l - V ~ 2 d V  I 
(1-1Y12)(2-V-V*) dV. (2.2) 

Two further integral relations were overlooked. Multiplying (1.4) by $saV*/as taking 
the real part and integrating over all space, we obtain after some integrations by parts 
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Similarly, multiplying (1.4) by zaq*/aZ, we obtain 

where VH = V - ia/az is the gradient perpendicular to Oz. A number of further results 
follow from (1.8), (1.9) and (2.1)-(2.4). For example from (1.9) and (2.4) 

From (2.1), (2.3) and (2.5), we have 

%‘=; ( l - I q l 2 ) ( 2 - ’ P - 9 * ) d V  (2.6) 

(2.7) 

5 
5 Up = f  ( 1  - /YI2)(3 -‘I’ -9* - 19i2) dV. 

From (2.2) and (2.6) it follows that 
47rm = p + U%. (2.8) 

The last of these affords a new and immediate test of the numerical work of paper IV. 
Taking values listed in table 1 of that paper, we obtain table 1 .  

Table 1. 

U 0.4 0.5 0.55 0.6 0.63 0.66 0.68 0.69 

4 rrm 284 163 133 113 105 103 111 125 
p +  UB 285 164 133 113 105 103 111 125 

2.2. Two-dimensional solutions 

With d V = dx dz and the different interpretations of 8 and p noted above, relation 
(2.1) holds as before. After correcting a misprint in (4.5) of paper IV, we have instead 
of (2.2) 

(2.9) 

To obtain the analogue of (2.3), we multiply (1.4) by xaq*/dx and integrate over x 
and z, so obtaining 

27rm(l-2 U2)1 ’2=p  +tu (1 - 1912)(2 -q -9*) d V. I 
(2.10) 

while (2.4) and (2.5) require no change. Equations (2.6)-(2.8) have the following 
counterparts: 

%’=: ( l - ~ 9 ~ 2 ) ( 3 - ~ - ’ P * - ~ ~ ~ 2 )  d V  (2.11) 

(2.12) 

I 
I U p = ;  ( 1 - ) 9 I 2 ) * d V  

(2.13) 2 7 r m ( 1 - 2 ~ ~ ) ” ~ = p ( l -  u 2 ) + 2 u % .  
Taking values listed in table 2 of that paper, we obtain table 2 here. 
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Table 2. 

~~~ ~~ 

U 0.3 0.4 0.5 0.6 0.65 0.68 0.69 

2 ~ m ( l - 2 U ~ ) ' / ~  23.8 18.4 14.0 9.68 7.03 4.88 3.89 
p(1 - U 2 ) + 2 U 8  23.8 18.4 14.0 9.68 7.02 4.88 3.89 

3. The Kadomtsev-Petviashvili limits 

3.1. Three-dimensional solutions 

The form of the solution to (1.4) in the limit U + U, (the speed of sound) was elucidated 
in the appendix to paper IV. Writing 

9 = f + i g  (3.1) 

f =  1 + ~ ' f ,  + ~~f~ +.  . . (3.2) 

g=Eg,+E3g*+ . . .  (3.3) 

U =  U0+&2U1+. . . (3.4) 

5= E 2 S  5 = E.?. (3.5) 

where f and g are real, we developed solutions for E + 0 of the form 

where A and g, are functions of the stretched variables 

At leading order we showed, as expected, that 

U, = l /& 

and also that 
(3.6) 

(3.7) 

To this order we also found that 

8 =  Uop (3.8) 

p=$.rrm (3.9) 
consistently with (l.lO), (3.6) and (2.8). In terms of g, ,we obtained to the same accuracy 

(3.10) 

where d v = & ' d V = 2 m r d u d l .  

Petviashvili (1970) equation 
Continuing to the next order, we discovered that g, obeyed the Kadomtsev- 

(3.11) 

where now V , = V - & l d < ,  V being defined from the stretched variables. Also, after 
some straightforward reductions, we may show from (2.1) that 

E =  U p + K / p  (3.12) 



Motions in a Bose condensate: V 2997 

where 

(3.13) 

the second form following from (3.10). 
We are now able to expose the apparent contradiction with the similar analysis of 

Iordansky and Smirnov (1978) which we mentioned in § 1. These authors proposed 
(3.12) as the first two terms in the asymptotic expansion of 8 in the limit p + m .  
Lacking (3.13), they evaluated the constant K as follows. By (1.8) the differential of 
(3.12) is 

d U l d p  = K/p3.  (3.14) 
Integrating this using (3.6) we obtain 

U = 1 / a -  K / 2 p 2  

so that by (3.4) 
E2U1=-K/2p2 

or using (3.10) 

Expressions (3.13) and (3.17) are consistent only if 

2U1 [ (? )2dv=a[  ($)'d. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

a relationship that is far from apparent in the parent equation (3.11), and appeared 
at first to be possibly in contradiction with it. 

Equation (3.18) follows directly from the new integral relations of $2.1 after 
(3.1)-(3.4) have been inserted into them. Moreover, it is also found that 

(3.19) 

a second, far from obvious, result. Now it is clear, on multiplying (3.11) by g, d <  and 
integrating by parts, that 

By (3.18) and (3.19) this implies 

(3.20) 

(3.21) 

and 

2 d u l  [ (2)2 dv = -; [ (VHgl)' du (3.22) 

which shows that U,  < 0; the wave moves subsonically. Also 

(3.23) 

is evidently positive, i.e. d U/dp > 0 by (3.14). 
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3.2. Two-dimensional solutions 

We may proceed with (3.1)-(3.4) as above in the two-dimensional case also, but now 
f; and g, are functions of the stretched variables 

t=  E 2 X  (= EZ (3.24) 

and dv = d V = d t  dq. Since d V is O ( E - ~ )  rather than O( E - ’ ) ,  p is proportional (and 
not, as above, inversely proportional) to E.  While (3.6) and (3.8) hold as before, (3.9) 
and (3.10) are replaced by 

p = 4 m m / 3  (3.25) 

(3.26) 

Equation (3.11) follows as before, while (2.1) gives in place of (3.12) 

8 =  Up+Kp3 (3.27) 

where 

the second form following from (3.26). 

asymptotic expansion for p + 0, we have 
Repeating the argument below (3.13), with the crucial difference that (3.27) is the 

(3.29) d Uldp = -3 Kp 

which leads to 

U =  1/f i -3Kp2/2 

and 

E’ U,  = -3 Kp2/2. 

By (3.31) and (3.26) we have 

Combining this with (3.28) we obtain instead of (3.18) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

Equation (3.33) follows directly from the new integral relations of Q 2.2 after 
(3.1)-(3.4) have been inserted into them. It is the analogue of (3.18) while 

(3.34) 

is the analogue of (3.19). Equation (3.20) holds as before, so that (3.21) and (3.22) 
are replaced by 

(3.35) 
( V H g l ) 2 d v = - z [  1 (%)’d. 

2 d U 1  [ (%);d.=-3 [ (VHgl)2dv (3.36) 
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which again shows that U,  < 0. Also 

K =L 2Jz 1 (VHgl)2 dv[ (%)2 d o l p 3  (3.37) 

is evidently positive, i.e. d U / d p  < 0 by (3.29). 

Manakov et a1 (1977): 
All these relations can be confirmed explicitly by using the exact solution of 

1 2ac 
U I =-- 2Jz g 1 = - 5 2 + 1 2 + 5  (3.38) 

and it is also found that 

K = 3/128.rr2& m = 2Jz. (3.39) 

4. Stability of solutions 

4.1. General considerations 

The stability of a solitary wave can sometimes be established by showing that it has 
minimum energy, g, for given momentum, p .  Benjamin (1972) proved that the soliton 
solution of the one-dimensional ( I D )  Kdv equation is stable by this method. The energy 
8 = go + A 8, and momentum, p = pa + Ap, of a state 9 = q0 + A 9  in the neighbourhood 
of a steady solitary wave state, 9,, are in general different from the values go and pa 
given by To. Exceptional cases (excluded below) are disturbances A 9  that merely 
correspond to rotation or translation of axes, for which A 8  and Ap clearly vanish. 
Since q0 is itself only one member of a whole family of solitary waves on which p 
varies continuously, we can generally regard 9 as a disturbance of a neighbouring 
solitary wave, To+ A q o ,  that has the same momentum pa+ Ap, = po+ Ap. Taking this 
in place of qo as the new reference state for 9, we may assume A p  is zero for ' P O + A 9 .  
In general A 8  will be non-zero. The sign of A 8  is the central issue. 

If A 8 > 0  for all sufficiently smooth A 9  (such that Ap=O) we may reasonably 
claim that the solitary wave is stable. Such a method of proof, requiring as it does 
every A 9  to be considered, is not easily given: to show that A 8  > 0 for particular A 9  
establishes nothing. 

From the fact that A 8  < 0 for one particular A 9  one cannot, in the first instance, 
infer instability: p may not be the only constraint on the solutions. For instance 
Zakharov and Shabat (1973) found an infinite set of quantities conserved by the I D  

NLS equation, of which p was only one. If the Y 0 + A 9  giving negative A 8  does not 
satisfy all these constraints, it is not accessible from 9,,, and it is therefore irrelevant 
to the stability of 9,. Before instability can be claimed, it must be demonstrated that 
To+ A 9  obeys all constraints. 

The only generalisation of the I D  NLS equation to 2~ that is known to possess an 
infinite set of conservation laws is the Davey-Stewartson equation (Benney and Roskes 
1969, Davey and Stewartson 1974) (see Anker and Freeman 1978). It does not seem 
to be possible to generalise the Zakharov-Shabat procedure to create conservation 
laws for our 213 and 3~ NLS equations. The most plausible guess is that the multi- 
dimensional forms of (1.1) do not possess any additional conservation laws. There is 
no proof of this speculation at the present time, but we shall assume that it is true. 
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We might naturally be led to ask at this point whether the circulation 

gives rise to further conservation laws. Single-valuedness of VI requires that C(T) is 
zero if the curve r does not surround a curve (a ‘vortex line’) on which Yr vanishes 
and is a multiple of 27r (in the present dimensionless units) if it does. The low velocity 
solitary waves possess vortex lines with circulation 277 corresponding to simple zeros 
of 9; the high velocity solitary waves do not. Especially for the 3D case, where one 
solution of each type exists for any sufficiently large p,  the question naturally arises 
whether solutions with and without vorticity are accessible to one another. Classical 
fluid dynamics would suggest the answer, ‘No’. If we adopt the Madelung transforma- 
tion (see paper IV) 

Yr = R exp(iS) p =  R 2  v = v s  (4.2) 

we quickly find a parallel between (1.1) and the motion of a barotropic inviscid ‘fluid’ 
of density p, obeying the Kelvin-Helmholtz theorem of constancy of circulation C(T) 
for all curves r moving with the fluid velocity v. At first sight, then, it would seem 
again that states with and without circulation are inaccessible to each other. This 
however turns out not to be the case. It is a fact, borne out by the numerical conditions 
to be reported (see 0 4.5), that, as Yr evolves by (l.l),  zeros can appear or disappear. 
As a vortex shrinks, any curve r which threads it is eventually brought to its ‘core’ 
(i.e. the curve on which p vanishes) at which instant T is no longer closed and Kelvin’s 
theorem ceases to apply. We may however at the same instant define a new curve r‘, 
initially coincident with r, which is subsequently carried by the motion outside the 
ring, and round which (there being no enclosed zero of Yr) the circulation C(T’) is zero. 

These considerations suggest that it may be possible for solutions in the neighbour- 
hood of the upper branch of the 3~ solitary waves to collapse onto the lower branch, 
and in 0 4.2 we give some support to the idea that the upper branch is indeed unstable. 
It is appropriate here to explain why our use of the word ‘collapse’ is appropriate. In 
Thomson’s (1883) Adams’ Prize Essay, two solitary waves (vortex rings) in an incom- 
pressible inviscid fluid were allowed to encounter one another, as a result exchanging 
energy and momentum but receding to infinity still ‘ringing like bells’. We should 
emphasise that an encounter between two of our solitary waves would evolve differently. 
The ‘ringing’ set off by the ‘collision’ must, in a compressible medium, generate sound 
waves that radiate the excess energy in the ringing to infinity. Thus, in a coordinate 
frame moving with a stable solitary wave, the amplitude of a disturbance would, at 
any fixed point, ultimately approach zero. Thus, if a disturbed upper branch solution 
does evolve to the lower branch, the final state as t + CO will be steady (in the comoving 
frame), the energy difference having been sonically radiated away. The word ‘collapse’ 
appears to describe this process aptly. In the language of stability theory ‘collapse’ 
implies that a stable solitary wave is also asymptotically stable, i.e. at every fixed point 
the disturbance disappears in time. 

4.2. The Derrick-type arguments 

One form of Yro+AYr (=?) that satisfies the right conditions at infinity is, for the 
three-dimensional waves ( D  = 3), 

Yr = q0( as, bz )  (4.3) 
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or for the two-dimensional waves ( D  = 2 ) ,  

P = qo( ax, bz )  (4.4) 

where a and b are constants, which may be equal (Derrick 1964) but which are more 
dangerous for the stability of qo when unequal. In fact the argument below, when 
generalised to arbitrary a and b, shows that the critical choice is a # 1 ,  b = 1,  and we 
shall concentrate only on that case. 

Referring to (1.8) and (1.9) we see at once that 

p = a 1 - D  Po (4.5) 

and 

or using the integral properties of 0 2 

8= a 1 - D [ 8 0 + & z 2 - 1 ) ( D - 1 ) ( 8 0 -  Upo)]. (4.7) 

It is required to compare this with the energy of a solitary wave of momentum (4.5). 
Progress can be made when we limit ourselves to small deviations of a from unity, 
and work to second order in a'= a - 1 ,  an idea familiar from linear stability theory. 

Let the solitary wave with momentum (4.5) have velocity U + SU. Correct to second 
order in 6U we have 

dp0 1 a2po p -po=-SU+- - (6U)2  au 2 au2 
where the partial derivatives are taken along the solitary wave seqyence at the state 
a = 1 .  According to (4.5) the disturbance has momentum given by 

p - Po = ( 1 - D)p,a ' - 1 - D)poa'2 (4.9) 
to second order in a'. Equating (4.8) and (4.9) we determine, by the value of SU, the 
solitary wave having the same momentum as the disturbance 

The corresponding energy of this solitary wave is go+ 6g0, where 

= ( 1  - D){  po  ua' -f[ p o  UD - ( 1  - D)pia u lapo]af2}  (4.11) 

where in the last line we have used (1.10). The energy 80+680 must be compared 
with the energy 8,+68 implied to order 

(4.12) 

by (4.7), which is 

6 8 = ( 1 - D){ Po UU' - f[ 8& + (3 - 2 0 )  ( 80 - Upo)] U " } .  
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The required energy difference is therefore 

A %  = 6 8  - 68, = -;(D- i ) [ ( ~  - 3 ) ( 8  - up)+ ( D -  i)p2au/ap]af2 (4.13) 

in which we have omitted the zero suffix on the right, it being understood below that 
the expression is evaluated for the solitary waves themselves. 

Since 8 > Up and a U f a p  < 0 for the entire 2~ sequence of solitary waves, 

A 8 > 0  for D = 2. (4.14) 

From the reasons stated in $ 4.1 this result proved for the single disturbance (4.4) 
establishes nothing. 

On the lower branch of the 3~ sequence of solitary waves, a U / a p  is negative; on 
the upper branch it is positive. Thus 

A 8 > 0  on lower branch ( D  = 3)  (4.15L) 

A 8 < 0  on upper branch ( D  = 3 ) .  (4.15U) 

Again we can conclude nothing about the stability of the lower branch, but if we accept 
the proviso of $ 4.1, that no further conservation laws exist for the 3~ NLS, we may 
conclude that the upper branch is unstable. 

It  appears also that the KP rational soliton, though stable in ZD (e.g. Freeman 1980), 
is unstable in three. It must be clearly recognised that these conclusions, like those 
of Derrick ( 1964), are crucially dependent on the assumed non-existence in two and 
three dimensions of additional conservation laws or other integrability constraints 
known to exist in one dimension for a variety of equations and in two dimensions for 
the Kadomtsev-Petviashvili equation. 

4.3. Virial theorem 

Information about solutions to ( 1 . 1 )  can be derived by the virial method (e.g. 
Chandrasekhar 1969). This has been successfully used to demonstrate self-focusing of 
2~ solutions to the NLS equations with zero boundary conditions, i.e with 191’ replacing 
1912 - 1 in ( 1 . 1 )  and with 9 + 0 substituted for 9+ 1 in (1.2) (see Zakharov and Synakh 
1976, Ablowitz and Segur 1979). The analogous results that apply in our case appear 
to be considerably less useful, but worth recording here. 

The integral 

M = (1912- 1 )  dV (4.16) 

is, like % and p ,  conserved by ( 1 . 1 ) .  Although convergent, its value for solitary waves 
depends on the shape of the ‘surfac: at infinity’, i.e. on the way that the r + CO limit 
is taken in the integral: see (1.6) or’(1.7). Such ‘improper integrals’ were discussed 
and interpreted in papers I and IV. If we take an initial 9 in which the leading terms 
(1.6) or (1.7) in the large r expansion are absent, M is unambiguously defined. As 
this initial 9 evolves, M is conserved. It may happen that, except at large r, a stable 
solitary wave develops, i.e. in a frame moving with the appropriate velocity, U, the 
disturbance approaches solitary wave form, except at large r. Nevertheless, at all 
sufficiently large r, transients will remain. If the integral (4.16) were performed over 
any large fixed volume in this frame, the answer would tend to a limit different from 
M,  and this limit (5, say) would depend on the shape of that volume, being different 

1 
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for (say) spheres or for rectangular boxes. The difference M - would refer to the 
still evolving solution outside that volume. 

The integral (4.16) represents a mass defect initially established in the system (I'U(' 
is the normalised fluid density: see paper I). If M # 0, mass must have been added 
or subtracted when the disturbance was initiated It is reasonable to suppose, as we 
shall now do, that 

M = O  (4.17) 

i.e. the initial disturbance only displaces mass. (Non-zero M can also be removed by 
making an adjustment in the transformation to dimensionless variables: see paper I.) 

The other integral of interest is the virial tensor 

Ijj = xixj( / '€I2 - 1) d V (4.18) 

which can be made finite by choosing the starting 'U to lack stretched dipolar com- 
ponents, so that m as defined by (1.6) or (1.7) is zero initially. It can be shown from 
(1.1) that, if (4.16) holds, 

I 

In particular 

and also 

IVH'U12dV+f(D-1) (l- l 'Ul)2dV I 

- 4 8 + 4( D - 2) (1 - 1'U[2)2 d V.  I d2 I j j  
d t Z  
-- 

(4.19) 

(4.20H) 

(4.202) 

(4.21) 

The fact that 

I H H  + +CO I,, + +oo t+oo (4.22) 

is consistent with the development of a dipole moment (1.6) or (1.7): in this context 
we should note that these asymptotic forms imply a positive density excess 1 at 
all sufficiently great distances, consistent with the development of a solitary wave or 
a number of solitary waves, and with the plus signs in (4.22). In the case D = 2, (4.21) 
can be integrated at once to give 

Ij i  = A +  Bt + 2$t2 

where A, B and 8 are constants. 

4.4. Numerical evidence 

To gain further insight into the stability of the solitary waves, a number of programs 
were written to solve the time-dependent 2~ and 3~ NLS (1.1). We sketch here only 
the essential points of the numerical techniques and present the results that seem most 
relevant. 



3004 C A  Jones, S J Putterman and P H Roberts 

In the axisymmetric 3~ case, (1.1) takes the form 

(4.23) 

where U,(>O), the velocity of the frame of reference, is chosen to retain the main 
disturbance in the centre of the frame. Initially the most appropriate value of U, for 
the chosen initial state is unknown, but it can be found by trial and error. In cases 
where the initial disturbance breaks up into several solitary waves, all moving with 
different speeds, it is practicable to follow the time development of only one of them. 

Solutions to (4.23) are required on infinite s and z intervals, a difficulty we met by 
transforming those coordinates to finite intervals by the stretching 

(4.24) 

which was found by trial to be satisfactory. The intervals 0 S s S CO, --COS z s 03 are 
now mapped into the finite box O S  { S  1, -1 s 5 s  1, which was represented by an 
equally spaced mesh, using up to 33 x65 grid points. Time evolution was followed 
with the hopscotch method (Eilbeck 1978, Makhankov et al 1981) which is of second- 
order accuracy. The spatial derivatives were replaced by second-order centred 
differences. 

The momentum and energy were evaluated inside a set of nested boxes centred on 
= 2 = 0, the last box embracing the entire system. In this way the spatial distributions 

of these quantities could be continuously monitored. 
This scheme allowed reliable integrations for times of up to about t = 30. Beyond 

this, a significant amount of energy is present at the outermost points of the grid, where 
stretching of coordinates is necessarily large. The accuracy of the representation then 
breaks down and the solution ceases to be reliable. Ideally, one would allow the 
outgoing radiation to escape from the box. Unfortunately in a dispersive medium such 
as this there is no simple way of imposing a local Sommerfeld condition. Simple 
attempts to cut the boundary off, or to add an artificial viscosity near the boundary, 
resulted in reflected waves that prevented the system from attaining a steady state. 
This problem has been recognised in a number of situations, and a discussion of 
various methods of alleviating the difficulty is given in Israeli and Orszag (1981). 
Because of these problems it is hard to rule out the possibility that solutions which 
appear stable over the time of ifltegration are unstable to very slowly growing perturba- 
tions. Despite these difficulties, a number of interesting observations did emerge from 
the numerical integrations. 

In the first case considered the initial momentum and energy were chosen to be 
below the critical values pmin, Emin (see figure l ( a ) ) .  The initial state, VIinit, was 
constructed from a steady-state solution q0, near the cusp (the U = 0.65 steady solution, 
in fact) by writing 

'P ini t=  1 +0.8('€'0-1). 

This gave an initial momentum and energy of 45.3 and 34.7, respectively. Figure 2 
shows how the momentum and energy in a small box ( O S  s s 3, -3 s z s 3) and in a 
larger box ( O s  s s 5 ,  -4.49s z s 4.49) evolved in time; we denote these by p s ,  ES for 
the small box, and pL, gL for the large box. The total momentum and energy in the 
system are conserved, so the observed decay in p s  , 8,, pL, gL is balanced by energy 
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t 

0 10 2 0  30 
t 

Figure 2. Time evolution of the momentum energy of an axisymmetric solution of the 
non-linear Schrodinger equation having p = 45.3, 8 = 34.7. The ( p s ,  24,) refer to integrals 
over the small control box (0 s s Q 3, IzI s 3), and the ( pL, gL) refer to the same integrals 
over the large control box (OG s ~ 5 ,  1 ~ 1 ~ 4 . 4 9 ) .  The starting momentum and energy lie 
below the minimum values ( p , , , ,  gm,"): see figure l (a) .  The solution appears to be 
evanescing. 

radiated out of the boxes by sound waves. Figure 2 gives some idea of the timescale 
over which the solution may be expected to collapse completely. 

qinit= l+(vI , -  1)[1+2iexp(-0.3i)]  

In figure 3 we give corresponding diagrams for our second case in which 

where qo is now the wave with U=O.5, comfortably on the lower branch of figure 
1 ( a ) .  The evolutions of p s ,  gS, pL, 8, are quite different from those of figure 2. There 
is no evidence that the initial disturbance will evanesce into sound waves. Rather, the 

t 
0 10 20 30 

t 

Figure 3. Time evolution of ( p s ,  gS), ( p , ,  24,) as defined in the caption of figure 2 for an 
axisymmetric solution of the non-linear Schrodinger equation havingp = 155.23, 24 = 144.59. 
The asymptotes to which these would tend if the solution became the U = 0.5 solitary wave 
are indicated by the horizontal lines on the right ( ~ ~ 5 8 3 . 6 7 7 ,  %,=42.606, pr= 114.10, 
24,169.00). 
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momenta and energies appear to stabilise at values near those expected for the U = 0.5 
wave, and these are also shown on the right of figure 3. The final ‘terminal’ velocity, 
U,, that retained the disturbance in the centre of the frame was also close to 0.5. 

Figure 4 presents similar results for a solution of the 2~ NLS. The numerical attack 
was almost identical to the one adopted above and the difficulties were very similar. 
The equation replacing (4.23) is 

(4.25) 

and stretching (4.24) was again used (with s’ and s replaced by 2 and x). The solitary 
waves have no upper and lower branch and no minimum p and 8; there is therefore 
no analogue of the first case above. We constructed an analogue to the second case from 

qinit = 1 + (qo - 1)[ 1 + i exp( -0.3i)l 

where ‘Po was again for the U = 0.5 solitary wave. The plots of p s ,  8,, pL, gL in figure 
4 are again consistent with an approach to a steady state near U = 0.5. 

I L I 

0 10 20 30 
t 

Figure 4. Time evolution of ( p s ,  gS), ( p L ,  8,) for a two-dimensional solution of the 
non-linear Schrodinger equation having p = 10.67, g = 8.46. The control boxes are now 
( O S X C ~ ,  1 ~ 1 ~ 3 )  and ( 0 ~ x 6 5 ,  1 ~ 1 ~ 4 . 4 9 ) .  The asymptotes to which these would tend if 
the solution became the U = 0.5 solitary wave are indicated by the horizontal lines on the 
right ( ~ ~ “ 7 . 0 6 ,  gsf4.22, p,-8.813, 8,-5.375). 

Some of the oscillations of the p curves in figure 4 (and to a lesser extent in figure 
3) are presumably due to reflection of waves from the sidewalls; although this effect 
has been reduced by the stretched mesh, it was not possible to eliminate it entirely. 
The experiments nevertheless suggest that the initial states corresponding to figures 3 
and 4 settle down to the computed steady-state values, and do not completely decay 
away into radiation. As already mentioned, however, we cannot rule out by these 
numerical calculations the possibility of decay on a very long timescale. 
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4.5. Creation and destruction of circulation 

We mentioned in 8 4.1 that Kelvin’s circulation theorem does not appear to impose a 
strong constraint on the evolution of solutions to the 2 D  and 3~ NLS. In particular, it 
is possible in three dimensions for a simple zero of W(s, z ) ,  corresponding to a vortex 
ring, to appear naturally during the course of a time integration of (1.1): similarly the 
evolution of two-dimensional solutions can create a simple zero of W(x, z )  correspond- 
ing to a vortex pair. 

In figure 5, we show the time evolution of an initial state by means of contour plots 
of the scaled density ]VI2. The initial state was a three-dimensional solution with no 
zero of W and hence with no ‘vorticity’. It was in fact constructed from a Derrick-type 
perturbation (4.3) 

Y,”,, = *o(as, z )  a = ;  

where WO was the solitary wave for U = 0.65. The density contours are equally spaced 
at intervals of 0.1, the tenth contour line marking a density equal to that of the ambient 
medium. Successive pictures form a time sequence at intervals of A t  = 2. The contours 
were transformed back to the real physical coordinates (s, z )  in the box 0 s  s 5 15, 
-106  z 6  10. The initial momentum and energy were 503.5 and 331.4. The choice 
U ,  = 0.6 of reference frame velocity was an appropriate compromise between the higher 
speed of the high density regions and the lower speed of the low density regions (and 
vortex ‘core’) which move to the bottom of the display window. 

Until about t = 14, the minimum density occurs on the axis of symmetry and is 
greater than zero. Between t = 14 and t = 16 the innermost contour ‘pinches off’ the 
axis and forms a core surrounding a zero in density, IY(s, z)12, corresponding to a 
vortex ring. As t increases, the core moves outwards, at first rapidly but subsequently 
increasingly slowly as it stabilises into a permanent structure. In short, between t = 14 
and t = 16 a vortex ring has been created from an initial state that possessed no 
‘vorticity’. Similar events can be discussed in integrations of the 2~ NLS, where a vortex 
pair may be produced from an initial configuration that had none. We consider this 
case further below. 

We attempt to model the formation of a vortex pair at the origin at time t = 0. We 
shall focus on C(T) for the curve r shown in figure 6, in which the location of the 
vortex pair at small positive t is marked by crossses. Since the fluid ‘velocity’ (4.1) 
on the axis of symmetry Oz is always directed along the axis, the segment rl of r is 
a material curve throughout. The semicircular segment Tz at infinity may move slightly, 
but because of its remoteness its contribution to the circulation will scarcely alter. The 
same will be true on rl except near the origin, and we show in figure 6 an imaginary 
(broken) circle containing the only part, T lo ,  of r, on which significant changes occur 
during the creation of the vortex pair. 

Provided 1x1 = O ( E ” ’ )  and IzI = O( E ) ,  Y may be approximated by 

Y =  a U F ( E - x 2 ) + c a ( z -  UFUOX’) (4.26) 

where E = uot is small in modulus, i.e. we consider only very small times before and 
after the instant at which the vortex pair is created; a and U,, are constants. Substituting 
into (4.25) we see that (4.26) is a solution to leading order in E, i.e. it is locally valid 
near 0. 

For t < 0, the W of (4.26) has no zeros near 0 nor (as we shall suppose) far from 
0. Since Y = R exp(iS) is single-valued, so is S, and the circulation (4.1) vanishes for 
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Figure 5. (continued) 

all curves, including r. We may note however that as t approaches 0, the ‘fluid velocity’ 
on r10, 

(4.27) 

becomes very large at 0 while the density in (4.2) 

tends to zero equally rapidly, their product (the momentum density) being finite and 
vanishing at t = 0 .  Because of the size of U,, the segment Tlo makes a significant 
contribution to C(T). 

For t > 0 ,  the Y of (4.26) is single-valued but, since it has acquired two zeros 
x = * & ‘ / 2 =  * ( v o t ) 1 / 2 ,  z = UFdjt, s is not. The velocity, still given by (4.27) near 0, is 
reversed, as is the contribution to the circulation from Tlo, i.e. 

(4.29) 

Since the total circulation was zero for t<0,  the segment ABCDE (figure 6 )  must 
make the contribution ir throughout, so that for t > 0 the net circulation is 2 n  by (4.29). 

We may wonder what happens at t = 0 itself when (4.29) is meaningless. At this 
moment a zero of p lies on r. Lacking ‘material’ at 0 it can scarcely be described as 
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Figure 6. Schematic figure illustrating the application of Kelvin’s theorem to the contour 
ABCDEOA for a two-dimensional solution of the non-linear Schrodinger equation in a 
case when a vortex pair (marked with XX)  appears at f = 0. For a further description, see 
text. 

a ‘material curve’ in the sense of Kelvin’s theorem. Stated another way, r ceases to 
be a closed curve at t = 0. We may if we wish define a new material curve, r‘, coincident 
with r at that instant and subsequently passing between the vortex pair, but the 
circulation C(T’) will differ from C(T) by 27r. 

Through model (4.26) we have been able to show how circulation may be created 
without the appearance of any singular behaviour in 9. It is presumably also possibly 
by reversing the sign of uo in model (4.26) to destroy vorticity, and indeed the NLS 

equation is time-reversible: t += - 2 ,  P +. 9*. When considering the stability of solitary 
waves, such transformations are however inadmissible since they ignore an important 
ingredient: the fact that a disturbed solitary wave radiates sound away from it and not 
towards it. Stability questions are not time-reversible when the Sommerfeld condition 
is properly included. 

5. Conclusions 

The first part of this paper has been devoted to the derivation of new integral properties 
of solitary waves in both two and three dimensions, and in using these to test the 
numerical work of paper IV; tables 1 and 2 display the resulting vindication of those 
integrations. In § 3 the new integrals were specialised to the KP limit in which the 
speed of the solitary waves approach that of low frequency sound (2-’’*). This allowed 
us to bring our theory into harmony with that of Iordanskii and Smirnov (1978). 

The main part of the paper ( §  4) was concerned with the stability of the solitary 
waves. Attention was focused on axisymmetric disturbances of the 3~ waves, and on 
two-dimensional distortions of the 2~ waves. The analytic approach was hampered 
by uncertainty to whether the 2~ and 3~ forms of the NLS equation possess (as the ID  

form is known to do) an infinite sequence of conservation laws. Assuming that only 
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p and 8 are conserved in two and three dimensions, we could show that the upper 
branch of the 3~ sequence is unstable. We did this by proving that, in the neighbourhood 
of any state ( p ,  8), there exists a smooth 9, tending to 1 at infinity, having the same 
p but a lower 8. This neighbouring state was in fact a nearby solitary wave, stretched 
in its s coordinate in the manner first suggested by Derrick (1964). For the lower 
branch, and for the entire 2~ sequence, similarly stretched gave an 8 larger than 
the solitary wave of the same p .  Although nothing can be conclusively proved from 
this, we conjectured that these branches are stable, a view corroborated by numerical 
experiments. 

The time integration of a 3~ state, having initially p < pmin, strongly suggested that 
such states will completely disappear, by radiating their energy and momentum to 
infinity as sound waves. If p > pmin, sufficiently energetic initial states appear to evolve 
onto the lower branch, after the energy excess has been radiated to infinity. Similarly 
2~ states at first above the sequence appear in time to collapse onto the sequence. It 
was shown explicitly in one case how a disturbance could acquire circulation as it 
evolved, and it was argued that this was not in conflict with the Kelvin-Helmholtz 
theorem. Thus the concept of circulation being a topological constraint on the motion 
of vortices must be revised when effects of compressibility are included. The tensor 
virial theorem implied by the NLS equation was deduced, but was not found useful in 
understanding the evolution of disturbances. 
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